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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

In the last decade, interest in the study of the electrodynamics of moving 

media has increased considerably. Based on Minkowski's theory, Nag and 

Sayiedl have presented an alternate derivation of Frank and Tamm's2 formula 

for Cerenkov radiation. Boundary value problems involving stationary charges 

and one or  more moving dielectric media have been considered by Sayied3, 

Zelby and others. While Frank5 has analyzed the problem of an oscillating 

dipole in miform motion, the complementary problem, in which the medium is 

in uniform motion and the source and the observer at rest, has been indepen- 
6 7 dently solved by Tai and Lee and Papas . The present work is concerned with 

the following boundary value problem. 

4 

1. Radiation due to an oscillating (Hertzian) dipole over 

a iossiess semi-infinite moving dielectric medium. 

Here lossless means zero conductivity and the dipole source is assumed to be 

located in free space or vacuum which is stationary with respect to an observer 

in whose frame of reference all the fields will be determined. The problem 

may be regarded as an extension of Sommerfeld's8 dipole problem to moving 

media. The object of this study is, first to develop techniques of formulation 

of boundary value problems in moving media, and then to apply these techniques 

to the above problem to ascertain the extent to which the radiation patterns are 

modified due to the motion of the dielectric medium. 

It may be recalled that Weyl' developed a method by which Sommerfeld's 

solution for a dipole over a flat earth could be interpreted as a b-e of plane 

waves reflected and refracted by the earth at various angles of incidence. In 

order to give such a physical interpretation to the present problem, it is neces- 

s a r y  that we extend F r d l ' s  results to moving me'dia, nameky: 

2. Reflection and refraction of a plane electromagnetic 

wave at the boundary of a moving dielectric medium. 

1 
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The outline of the present work will be as follows. In Chapter II, the 

electrodynamics of moving media largely following Sommerfeldlo is presented. 

The method of potentials due to Tai' is also introduced. The problem of 

reflection and refraction is treated in Chapter III and the dipole problem in 

Chapter IV. Asymptotic solutions using the method of saddle points are obtained. 

Finally, a discussion of the results along with some suggestions for future 

research appears in Chapter V. 
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CHAPTER II 
ELECTRODYNAMICS OF MOVING MEDIA 

2 . 1  The Imentz Transformation 

Consider two coordinate systems as shown in Fig. 1, in which the y and y1 

axes coincide and the system S' is mbving tKith a uniform vdodty  v in the y-direction 

with respect to S. For the case when the two origins 0 and 0' coincide at the 

Z' 

S' 

V 

Y 
V 

L! 

Z' 

Y' 

FIG. 1: THE COORDINATE SYSTEMS 

instant t = t' = 0, the equations of transformation of the space-time coordinates 

from one system into another are given by 

I y' = y(y-vt) y = y(y'+vt') 

x' = x, z' = z x = x', z =z '  

t' = y(t- gx) t = y(t '+Ex') 

The above is known as the Lorentz or the Lorentz-Minkowski transformation. 

The various constants appearing above are given by 

c = (Po€o) -' = velocity of light in free space or vacuum 

eo = permittivity of free space = ( 3 6 a ~ l O ~ ) - ~  farads/m. 

p, = permeability of free space = 4 ~ x 1 0 - ~  henries/m 

p = v/c . 

3 
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2 . 2  Maxwell-Minkowski Equations 

Consider an isotropic homogeneous lossless (zero conductivity) medium 

moving uniformly with a velocity v in some direction. Without loss of generality, 

we can choose this to be the y-direction and orient the axes as in Fig. 1. Now, 

according to the theory of relativity, Maxwell equations must have the same 

form in all inertial frames of reference, that is, they must be covariant under 

the Lorentz transformation (2.1). Therefore in the unprimed or  laboratory 

system, we have 

aB 
- at V X E =  -- 

a s  
at V x H = J + -  - -  (2 .3)  

(2.6) 

and by attaching primes, we get Maxwell equations in the primed system, for 

instance, (2.2) becomes 

It may be noted that the divergence equations follow from the curl equations and 

the equation of continuity; hence do not yield any new information. To formulate 

a problem completely the constitutive relations must be known. These can be 

derived in the following manner. In the primed system where an observer is at 

rest with the medium, we have 

- D' = EE' - (2. 7) 

- B ' =  p€J' (2.8) 

where E: and p are the permittivity and the permeability of the medium in the 

primed system. Now, according to Minkowski's theory, which is based upon the 

special theory of relativity, the fields in the two systems transform according 

to the following scheme. . 
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where 

-. v=vy" . 

E+? v x g  = € ( _ E + I X _ B )  

Substituting (2. 7) and (2.8) into the above, we obtain 

1 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

- B - 2- V x_H = p(_H --x xg (2.14) 

These two relations were first derived by Minkowski in 1908. Solving for _B 

and _D in terms of _E and g ,  we obtain the desired constitutive relations 

n = ( -  E )* = refractive index in the primed system 
pOE0 

1-82 
a =  1-n2 6 2  ' % = w2c10E, 

(2.15) 

(2.16) 

The system (2.2) - (2.5) can now be solved once the sources are specified by 

the method of potentials discueeed in the next section. To illustrate the usefulness 

5 
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of this type of formulation a modified version of Nag and Sayied's method for 

Cerenkov radiation is presented in Appendix A. 

2 . 3  The Method of Potentials for Moving Media 

The method developed here is due to Tai6. The Maxwell equations 
-iwt assuming e variation a re  

V x  - E =iwg 
Vx_H=J -iw_D . 

Making use of the constitutive (2. 15) and (2.16) we obtain 

(V+iwQ)xg =iwp g-_H - 

(V+iwa)x_H = - i w  E g .  _E +J . - 
Applying the transformation 

we get 

i w R y J  
V x  - H1 = - i w  E a,. - El+e - 

Now introduce the vector potential A1 such that 

= vx a-1 - 
* A1 p q . l l l  - 

or 

(2. 17) 

(2. 18) 

. 

. 
(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

Substituting in (2.22), we obtain 

E = i w a - l .  A -Vg (2.25) -1 = -1 1 

where $d1 is the scalar potential. Substituting for El and H in (2.23), we -1 - 
obtain 
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The vector operator on the left band side can be expanded in rectangular coor- 

dinates thuf3 

n a  ~a h a  va=x-+y - +z- 
ax aay az 

Now define the gauge condition 

V . A  =-  ik2a2 
-1 w I, 

so that (2.26) becomes 

(2.28) 

To integrate (2.29) in an infinite domain we introduce the scalar Green's function 

G which satisfies the equation 

where q refers to source point. 

Two distinct cases depQrding upon the sign of a exist. 

Case 1: a > o o r  v < c/n 

The solution can be obtained by dimensional scaling 

a @ .ika@Rl 
G1 = 4r R1 

where R1, the modified distance is given by 

2 

(2.30) 

(2.31) 

~ a s e 2 :  a < O o r  v > c / n  

In this case, we have a two-dimensional Klein-Gordon equation and the 

7 
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solution is given by 

where 

. 
u 

(2.32) 

If the medium is moving in the negative y-direction, replace (y-yo) by (y,-y). 

Once the Green's function is known, the solution for A in (2.29) is given -1 
bY 

(2.33) 

and the electric and magnetic Cields are given by 

(2.34) 

(2.35) 

One final word is necessary. The vector and scalar potentialsL1 and f1 

introduced here do not form a four-vector in the Minkowski space. This is in 

contrast with the potentials employed by Lee and Papas7 which transform like 

four-vectors. The latter will not be used here. 

8 
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CHAPTER III 

REFLECTION AND REFRACTION OF A PLANE ELECTROMAGNETIC 
WAVE AT THE BOUNDARY OF A MOVING DIELECTRIC MEDIUM 

3 . 1  Geometrv of the Problem 
~~ ~ 

A s  shown in Fig. 2, the region z < 0 is filled by a medium, with a per- 

meability p,  and a permittivity E, moving uniformly in the y-direction with a 

velocity v. The region z > 0 is free space bo, eo) and is stationary. 

A plane electromagnetic wave traveling in free space in an arbitrary direc- 

tion is incident upon the interface; as a result there will be a reflected wave and 

a transmitted wave. 

azimuthal angles being measured from the x-axis. 

Let the orientation of the three waves be as in Fig. 2 , the 

3 . 2  Plane Waves in Moving Media 

In order to represent the transmitted field, we need plane wave solutions 

in the moving medium. 

for e-iwt variations are given by 

The Maxwell equations in the absence of sources and 

VxE= - i w g  (3 .1)  

VxH_ = -iwD_ (3.2) 

V * B = O ,  - V * D = O  (3 .3)  

Making use of the constitutive relations (2.15) and (2.16) we obtain 

The plane wave solutions which we a re  seeking can be represented thus 

i K  K 

i K  K 
E = E e  

H = H  e 

-0 - 

-0 - 

(3.4) 

(3.5) 

(3 .6)  

(3.7) 

where the first factor denotes complex amplitude, K the propagation constant and 

9 
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Reflected 

Transmitted 

FIG. 2: PLANE WAVE INCIDENCE ON A MOVING MEDIUM 

10 
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3. ie given by 

Here, the 8ubscript t refers to the transmitted wave, et is the angle between the 

negative z-axis and the direction of propagation aa shown in Fig. 2 and pt is the 

azimuthal angle. For our purposes, it is sufficient to treat the complex ampli- 

tudes as being independent of the coordinates x, y and z. In component form (3.6) 

can be written as 

To solve (3.4) and (3. 5), we first let 

and find that Kt and _ H I  satisfy 

We make one more substitution 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

It may be noted that the above equations imply 

V. HI' - = V -  E" - = 0 . (3. 16) 

+ 
The primes used here should not be confused with the similar notation used in 

the moving reference frame. The latter will not be used in this chapter. 

11 
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Eliminating one variable at a time between (3.14) and (3.15), we find that gf 
and H_" satisfy the modified vector wave equation 

(3.17) 

Expanding the left hand side according to (2.27) and making use of (3.16), we 

find and H_" satisfy 

2 (Va * V)E" - + a k  E_" = 0 

(Va.V) H_"+ak2 HIf - = 0 

(3.18) 

(3.19) 

These equations separate into three scalar equations in rectangular coordinates 

of the form 

[i2+: 5 +-+A? 2 I+!/=o 

where I+!/ stands for one of the components. Plane wave soluti 

given by 
i(klx +$y -k3z) 

e 

provided kl, %, k3 satisfy the characteristic equation 
rl 

2 k5 
kl t + k i  -ak2 = 0 

(3.20) 

ns of the above are  

(3.21) 

(3.22) 

Now, we are ready to construct plane wave solutions in the moving medium starting 

with either the electric or the magnetic field. Thus setting 

we get 

12 

(3.23) 

(3.24) 
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The amplitudes in (3.23) must satisfy the relation (3.16), so that 

klE" +$E'' -k3E" = 0 . ox OY 02 

Comparing (3.24) with (3.9), we get from the phase functions 

(3.25) 

K sin Otcos f t  = kl 

K sin Opingt = (k2-ws2) 

K COS et = kg 

(3.26a) 

(3.26b) 

(3.264 

substituting for kl, %, k3 in (3.22) we get the following dispersion relation for K 

K 2 2  sin et 1 (K sinet s ingt+ua)  2 2 2  + K cos et-ak2 = o (3.27) , a  

Solving for K /ko , the refractive index of the moving medium, we get 

(3.28) 

where CY is the angle between the direction of propagation and the velocity of the 

medium, (cos a = sin 0 sinp ) This expression checks with that of Papas" (see 

page 231, Eq. 61 ). We also note that the amplitudes in (3.9) will have to satis- 

fy the following relation 

t t -- 

(3.29) 
1 

K sinOtcOS$tE +- (KshOtsingt+wQ)E -KCOSOtE = O 
OX a OY oz 

The magnetic field H - can be obtained from (3.4). Making use of (3.27) and (3.29), 

one can show that the H - field thus obtained satisfies (3.5). From this it follows 

that the divergence relations in (3.3) are also satisfied. We conclude this section 

by summarizing the method of construction of plane wave solutions in moving media. 

13 
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Summary: To construct plane wave solutions in the moving medium, we 

subjecting the amplitudes to the condition (3.29)’ K satisfying the dispersion 

relation (3.27) and ( given by (3.8). The magnetic field is given by 

Alternatively, one can start with the magnetic vector by setting 

and obtain the electric field from 

everything else remaining the same except replacing E by H in (3.29).  

3. 3 The Modified Snells Law 

The incident and the reflected waves satisfy for e-iwt variation 

Vx E - = iwB_ 

Vx H - = -iwD - 

and the constitutive relations being 

V * B = O  - 

V * D = O  - 

B _ = p  H E=EoE_ . 
O--’ 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

The plane wave solutions are well hown  and the phase functions are of the form 

where 
k 2 = w p  2 E 

0 0 0  

5 = x sin 8 cos g.+y sin eisin gi-z COS e. 
i 1 1 

rl = x sin e,cos 8 +y sin Orsin gr+z cos e, . r 

(3. 34) 

(3.35) 

14 
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Here subscripts i and r stand for the incident and reflected waves respectively 

and the angles measured as in Fig. 2. 

Now, in order to match the boundary conditions at the interface z= 0, it 
is clear that the phase functions of the incident, reflected and the transmitted 

wave8 must be identical when z = 0. This is possible only if 

(3.36) 

I I 

Physically this means that the three waves are coplanar (the plane g=gi will be 

called the plane of incidence), and the angle of reflection is equal to the angle of 

incidence. "heee two results am no different from the case in which the lower 

medium is not moving. The &ell's law, which relates the angle of refraction to 

the angle of incidence is, however, modified according to c)  in (3.36) . Making 
use of these relations in (3.27), substituting for a and R, we get after some 

simplification 

(3.37) 

which is the modified Snell's law. We note that except when fi=O, T, the formula 

is affected by a change of sign of . 
The angle of total reflection ca.n be obtained by setting sin0 t=l and solving 

for Oi. For the case of Bi = 0, we get 

(3.38) 

Excluding the non-moving case (PO), from the inequality 

15 
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we conclude that the phenomena of total reflection occurs only i f  n2 < 1 and the 

value of this angle is less than the corresponding value in the non-moving case. 

The next sections are devoted to the boundary value problem of reflection 

and refraction. To facilitate analysis, different cases based on the polarization 

of the incident wave are treated separately. The modifications introduced in the 

Snell's law due to the movement of the dielectric medium are depicted in Figs. 

3-8for n = 2  andn=O.5. 

16 
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FIG 3: ANGLE OF REFRACTION VS ANGLE OF INCIDENCE FOR 
n = 2, pi= 0 
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n = 0 . 5 ,  8 .  = 90'. 
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c 

3.4 Electric Field Perpendicular to the Plane of Incidence 

In the coordinate system (xl, y1, z ) resulting from a rotation of x, y axes 

as shown in Fig. 9, the incident electric field is given by 

c 

t 

The two coordinate systems are connected by the following relations 

(3.39) 

It is easier to work with the (x, y, z) system instead of (xl, yl, z) in spite of the fact 

that the incident field has a simpler form in the latter system; the reason being the 

analysis of the transmitted wave would then be greatly complicated. In the (x,y, z) 

system the incident field becomes 
ik 5 

0 E.=(I I , 0)e 
1 1’ 2 

(3.41) 

where I1=Eosinvi, $=-Eocosgi and -E given by (3. 34). The magnetic field is given 

bY 

so that in component form (suppressing phase factors) 
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FIG. 9: THE (x, y, z) ANI’ (xl, yl, z) COORDINATE 
SYSTEMS. 
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The reflected field can be represented by 

where t) is given by (3.35) and the amplitudes satisfy the condition 0- E = 0 

which yields 
-r 

(3.43) 

R sine cos9 r 2  +R sin6 r singr+R3cos8r= 0 . (3.44) 1 r  

The magnetic field is given by 

so that in component form we have (suppressing phase factors) 

The transmitted wave can be represented by 

i K S  = (T T T )e Et 1’ 2’ 3 

where < is given in (3.8) and the amplitudes satisfy 

1 K sinetcosVt T1+ a ( Ksin8tsin$t+w S2)T2- K cos 8 t T 3- - 0 

The magnetic field is given by 

(3.46) 

(3.47) 
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so that in component form we have (suppressing the phase factors) 

t t 1  t 1 - K  
H = - p 3 s i n e  cosg +T case 
tY (3.48) 

H = - 1 p2Ks ine  cosg -T (KSine sing 
tz awp t t 1  t t  

The boundary conditions at the interface z = 0 are 

a) continuity of tangential components of E_ and H_ 

b) continuity of normal components of D_ and B_ (3.49) . 
These yield six equations and along with (3.44) and (3.47) we have eight equations 

between the six unknowns. 

matically satisfied as will be shown shortly. The continuity of the tangential 

components yields 

This need not disturb us, in fact, b) above is auto- 

I +R =T 

I +R =T 
1 1 1  

2 2 2  

k 

r 1 

(3.50) 

(3.51) 

(3.53) 

Before Solving this system, we will show that (3.49b) is automatically satisfied. 

Apart from the phase factor,at z = O+ , 
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B =- ko sine.(I C O S $ - ~  singi)+ k, - sinOr(R2cosgr-R1sinfr) 
z w  1 2  1 1  w 

Substituting for R1 and R2 from (3.50) and (3.51) and noting that vi=# and 

Oi=Or, this becomes 
r 

- k0 sinf3.(T2cos fi-T1sinqi ) 
w 1 

and at z = 0- 

(3.54) 

Bz= p a H  +S2E = K s i n 8 ( T  t 2  cosgi-T1singi) (3.55) tz t x w  

which is the same as  (3.54) because of Snell's law (3. 36). Similarly, at z = 0' 

D = E R  (3. 56) z 0 3  

and at z = 0- 

D = c a E  -!JH (3.57) 
Z tz tx * 

Instead of directly substituting for  E we express in terms of thus tz' 

so that the right hand side of (3.57) becomes 

Because of the continuity of tangential H, we can substitute the left-hand sides of 

(3. 52) and (3. 53) for Htx and H 

get 

respectively and after some simplification, we tY 

K sine k t o  
sine R3 (3.58) 

i 
2 

Po 

which is the same as (3 .56)  because of Snell's law. Thus we conclude that the 
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continuity of tangential E _  (E) and Snell’s law ensure the continuity of normal E@)). 
The solution for the six h o w n s  related by Equations (3.44)’ (3.47) and 

(3.50) - (3.53) can be conveniently carried out as follows: 

R =T -I 
1 1 1  

R =T -I 2 2 2  

(3.59) 

(3. 60) 

(3.61) 

T T T satisfying 1’ 2’ 3 

(3.62) 
T2 T  sin ne c0sg.t  sine ne sinV.+wa)-T Kcose =O 1 t i a  t 1  3 t 

2 k 0 K kO k 
tane.sine.sing.cos V.+T (--case + - c o s e i + s  taneisineisin gi) 

1 1 1  1 2 a l - C  tCco PO 

(3. 63) 

k K 2 k ,  
+T2 tanOisineisingicosgi+T3 -sinetcosfi = - Ilcosei . 

(3. 64) 

PO P PO 

The solution of the above equations for the general case is quite tedious though 

not impossible. We will consider only two special cases; when Vi= 0, 90 and 

also set I-( = po. 

0 

Case 1: p = po vi = o 

(3.65a) 
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The fields are given by 

iEo(xsinei- z cos e,) -ut 
E.=(O, -Eo, 0)e 1 
7 - 

E =(R 
-r 1’ 

E =(T t 1’ . 
The amplitudes of the transmitted and reflected waves are given by 

cos B.(sec O.+b cos 8 ) 
3 1 1 t 

T = - - -  2Eo’ (n2-1) 

R =T 
1 1  

R =T +E 2 2 0  

R ~ =  -T tan8 
1 i 

where 

(3. 65b) 

(3. 66) 

(3.67) 

(3.68) 

(3. 69) 

(3.70) 

(3. 71) 

(3.72) 

(3.73) 

(3. 74) 

(sec ei+b cos et) b ’2(2 - 1) M=b( - COS e +COS ei)(b+cos etsec ei)+ 
a t ( 1 -B2 (3.75) 
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Making use of (3.65) to eliminate et' we get the following convenient expressions 

for R1 and % 
0 2 2E 

R 1 N  =- p(n2-l)sin eicos ei (3. 72a) 

A significant feature of the above results is that the reflected and transmitted waves 

have components not originally present in  the incident wave. 

phenomena of the reflection and refraction by a moving medium cannot be completely 

described by merely specifying the reflection and transmission coefficients R and 

T defined by 

Because of this, the 

An exception, however, occurs when vi= 90' which is discussed next. 

Case 2: p = p g. = 900 + 
0' 1 

sinei (3. 76) 

and K can be determined from the relation 

K sin Bt = ko sin ei . 

+ This case was considered by Tai before. Actually, this Chapter is an extension 

of Tai's work. 
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The fields are given by 
c 

i LkoCy s m . - z  COB e,)-&] 
A 1 E.=xE e 

7 0  

The reflection coefficient R and and transmission coefficient T are given by 

sin(et-ei) 
R =  sin(e,+eJ 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

The results are identical to the stationary case modified by velocity terms intro- 

duced via (3.76). Eliminating 8 we get for the reflection coefficient r 

3.5 Electric Field Parallel to the Plane of Incidence 

(3. 78a) 

(3.82) 

The procedure is similar to the previous case except that we start with the 

magnetic field. Referring to Fig. 9, we have 
ik sinei-zc0s ei) 0 1  

H.=H e (3.83) - l o  

In the (x, y, z) system this becomes 

31 



T H E  U N I V E R S I T Y  O F  M I C H I G A N  
7322-2-T 

*o E 
H.=(I I 0)e 
1 1’ 2 (3.84) 

where E is given by (3.34) and I =H sing 

given by 

I =-H cos 9.. The electric field is 1 o i ’ 2  o 1 

E.= - V X %  
7 W E  

0 

so that in component form (suppressing phase factors) 

0 
k 

I  COS^ 
i 

E. =- 

k 

1y W E o  1 

0 sin 8. (I COS g i - ~ l ~ i n  gi) E. = - -  
0 

12 W E  1 2  

(3.85) 

The electric field is given by 

V x  HT i E = -  
T W E o  

so that in component form (suppressing phase factors) 

* 

The reflected field can be represented by 

%‘(R1> R2J R3)e ihr) (3.86) 

where r)  is given by (3.35) and the amplitudes satisfy the condition V * gr=O which 

yields 

R sin8 cos 9 +R sin8 sin 9 +R cos 8,=0 . (3.44) 1 r  r 2  r r 3  

E = - -(R3sin kO 8 sin $$-Rpos Or) rx W E o  r 

ry W E  

k0 E = - (R3sin 8,cos f$-R1cos 8,) 
0 

kO E = -  - sin Br(I+os gr-R1sin 9, ) . r z  W E ~  

(3.87) 
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- 
The transmitted field can be represented by 

%= (T1, T2, T3)eiK' 

where 5 is given by (3.8) and the amplitudes satisfy 

1 
K sinetcosfl T + - ( K s i n O  sing +wQT -Kcose T =O 

t l a  t t  2 t 3  

The electric field is given by 

so that in component form (stppressing phase factors) 

1 E = -  [T sine C O S ~  +T cos et 
t y W €  3 t t 1  

(3.88) 

(3.47) 

(3.89) 

The boundary conditions (3.49) lead exactly to the same set of equations as before 

except that we replace 1.1, by co and p by E .  Thus 

R =T -I (3.90) 

R =T -I (3.91) 
1 1 1  

2 2 2  
R 3 =-tane.(T 1 1  COS gi+T2 sin 92 (3.92) 

T , T , T satisfying 1 2 3  

(3.93) T2 T K sine cosf.+ - (Ksine sinf.+wQ)-T Kcose =O 
1 t i a  t 1  3 t 

1 Eo 1 a€ 
T k0 -tan B.sin Bisingicosfi+T2(L cos 8 + kO - cos e.+ 5 taneisineisin 2 Vi) 

€0 €0 

T3 2ko 

€0 
+ - ( K S h e  sinf.+wO)= - I ~ C O S ~ ~  a€ t 1  (3.94) 
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T (-we. k0 sineicos 2 f.+ kO - cosei+ - K coset) 
E 

€0 
1 

€0 

0 K 2k0 k 
- tanOisinOisingicosgi+T - sine cosf. = - I cosOi 

3 E  t 1 E  1 
0 

(3.95) 

As in the cme of perpendicular polarization,we will consider only two cases 

of incidence; when f .  = 0, 90’ . 
1 

Case1: p = p  g i = 0  
0’ 

The expressions for K and 8, are  given by (3.65) and the fields are given by 
L 

i [ko(x s i n q z  cosOi)-Wt] 
H.=(O, -Ho, 0)e 

T 1, 2’ 3 

1 i (x sine.+z cose.)-d] H =(R R R )e 0 1 1 

The amplitudes of the transmitted and reflected waves are given by 

T = - -  2HoP (2-1) cose.(n 2 secei+b coset) 
3 (1-8) 1 

R =T 1 1  
R =T +H 2 2 0  

3 1  i 
R = -T tme 

where 

b = (  

(3. 96) 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 
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b 
(secei+ - cos 6 ) 

p2 (2- 1) 
(1-Pl2 n 2 t + (3. 105) 

Eliminating 6 we get the following convenient expressions for the reflected field. t’ 

where N is given by (3.75a). 

Besides the remarks already made in connection with perpendicular polari - 
zation following (3.75a): an additional feature is that for no angle of incidence 

does the reflected wave vanish. Hence the Brewster angle phenomenon has no 

parallel in the present case. An exception, however, occurs when gi=900, 

which is discussed next. 

Case  2: ,u = p 
0’ 1 

The expression for et is given by (3. 76) and K can be found from the modified 

g.=9o0. 

Snell’s law. The fields are given by - - 
i L o ‘  k ~sine.-zcosei)-wtJ 1 

A 

7 0  
H.=xH e (3. 106) 

Eliminating K and Bt we get for the reflection and transmission zoefficients 

(3. 108) 
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2 F  

n cose.+F 
2 R=l-  

1 

2n2cos ei 
T= 

n 2 cosOi+F 

where F is given by (3.82) 

(3.109) 

(3.110) 

(3.82) 

The angle of incidence 8, for which the reflected wave vanishes is found by setting 

(3. 109) equal to zero. This is the modified Brewster's angle and is given by 

(3.111) 

In Fig. 10, 8, is plotted as a function of p for n = 2. 

3.6. Perpendicular Incidence 

Finally, we have to discuss the case of perpendicular incidence (Oi=O) 

which is rather trivial compared to the previous ones. 

between the two kinds of polarization disappears, we have to still consider 

separately the two cases in which the incident electric or magnetic field is in the 

x-direction. First, we note that 

e.=e =e -0 
1 r t- 

Though the distinction 

Case 1: E .  in the x-direction. 
- 1  

A -i(hz+ut) E.=xE e 
- l o  

H.=-y - A kO -i(k&&) 
Eo e 

LJ10 

(3.112) 

(3. 113) 
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A -i(KZ+Wt) 
E =xE T e 
-t 0 1  

k# - W o  
R =  1 k p + K p  

0 0 

Case 2: H. in the x-direction. 
1 

H . = h o e  -i(k++wt) 
1 

A ko - i (k, z+&) E.=y - 
1 WEo Hoe 

i(k0z-d) 

H k i(k0z-d) 

H =?H R e 

E =-?&onl e 
-r w Eo 

-r 0 1  

2k E where 
0 T =  1 koE+ K 

k E - K E  
0 0 

0 0 

R =  1 k E + K E  

(3. 114) 

(3.  115) 

(3. 116) 

(3. 117) 

(3. 118) 

(3. 119) 

(3. 120) 

(3.121) 

(3.122) 

(3. 123) 

(3. 124) 

(3. 1'5) 

(3. 126) 

(3.  127) 
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The situations are similar to the non-moving case. Furthermore, in Case 1 

and in Case 2: 

(3. 128) 

(3.129) 

These two ratios are not equal contrary to the non-moving case; the deviation is, 

however, of the order 3 since 

(3.130) 

This completes our study of the problem of reflection and refraction at a moving 

boundary. We close this chapter by presenting a summary. 

3 . 7  Summary 

The problem of reflection and refraction of a plane electromagnetic wave 

traveling in free space and striking a moving dielectric boundary has been solved 

in this chapter. The solution proceeded in a logical fashion by first  determining 

plane wave solutions in an unbounded moving medium. 

number, hence the refractive index, of the moving medium was found to be a 

function of the velocity, the direction of propagation, and n, the refractive index in 

a rest frame, as given by (3.28). The rest of the analysis was carried out in a 

straightforward manner. Snell's law was modified according to (3.37). Except 

when the azimuthal angle of the incident wave was 90' (or 180°), the results were 

found to be quite complicated, the reflected and refracted waves having components 

notoriginally present in the incident wave and Brewster's angle being absent. The 

results in the exceptional case were found to be quite similar to the non-moving 

case and the modified Brewster angle given by (3.111). 

caution is necessary. Though the results of this chapter are valid whatever the 
value of n (real), some modifications are necessary if total reflection occurs. 

The resuiting wave 

Finally, a word of 
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CHAPTER IV 

OSCILLATING DIPOLE OVER A MOVING DIELECTRIC MEDIUM 

4.1 Introduction 

The geometry of the problem is shown in Fig. 11. This is similar to that 

at a height of Fig. 2 except that there is an oscillating dipole of moment 

h above the interface. Because of the asymmetry introduced by the motion of 

the dielectric, in order to take care of the general case corresponding to an 

arbitrarily oriented dipole, it is necessary that we consider the three cases in 

which the dipole is oriented along each of the three axes, whereas in the non-moving 

case considered by Sommerfeld two orientations only were sufficient. The case 

of the vertical dipole is considered first. Two methods of solution a re  presented. 

In one, the problem is formulated in terms of Fourier integral representations of 

the vector and scalar potentials appropriate in each of the regions shown in 

Fig. 11. In the other method, all the fields are expressed as integrals of plane 
9 waves over all possible directions. The latter method, originally due to Weyl , 

has the advantage of providing a physical interpretation to the dipole problem by 

reducing it to the reflection and refraction problem considered in Chapter III. 

Next, the case of the y-directed dipole (parallel to the velocity) is treated and that 

of the x-directed dipole (perpendicular to the velocity) being omitted since the 

method of solution is no different from the previous cases. Electric field pat- 

terns in the two principal planes (xz and yz ) are  included. 

4.2 Vertical Dipole 

4.2.1 Fourier Integral Method . First let us define a two-dimensional 

Fourier integral. 



I .  
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Z 

FIG. 11: DIPOLE OVER A MOVING MEDIUM 
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Henceforth, we will assume that the functions a re  well behaved so that the above 

representation is valid. Referring to Fig. 11, the fields in the upper half space 

are given bythe well h o w n  relations 

iki 
-- E = k i  A_+ V V A - w -  (4.2) 

p H=VxA_ (4.3) 0- 

where 4 ,  the vector potential, satisfies 

V2A_+k2 A_ = iwpom ti(x)ti(y)S(z-h)zh . (4.4) 

In component form, the vector equation (4.4) separates into the following three 

scalar equations. 

2 

2 2 

V2A +k A = 0 

V A  +k A = O  
Y O Y  

x o x  

2 2 V A,+koAz= i wpom ti(x)ti(y)ti(z-h) . 

(4.5a) 

(4.5b) 

(4.5c) 

The solution of the third equation above consists of two parts; a primary excitation 

due to the dipole source, and a secondary excitation due to currents induced in the 

moving medium while the solution of the first two (4. Sa, 4.5b) is accounted for by 

secondary excitation alone. Speaking mathematically, the primary excitation is 

regular everywhere in the upper half space except at (0, 0, h) and the secondary 

excitation is regular everywhere in this half space. Since the boundary over which 

the fields are to  be matched is of infinite extent in the x and y directions, it is 

clear that each of these excitations should be expressed as a double Fourier integral 

in  these two directions. This will serve as the necessary groundwork to formulate 

the problem. Now, the primary excitation in A,, apart from a constant, is the 
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Green’s function for the Helmholtz equation which has the following integral 

representation due to Sommerfeld 

where 

R1= [Tx2+y2+(z-h)g @ . 

The secondary excitation can be represented by the integral 

(4.7) 

where F is an amplitude function and the only requirement being that the integral 

be regular throughout the region z > 0 . 
The potentials appropriate in the lower half space have’already been dis- 

cussed in Chapter 11 and in the present problem, there is no primary excitation. 

Each component of the vector potential, which must therefore be regular 

and satisfy (3.20), can be represented by the integral 

where 

Al=[p;+;-akq 4 Ib , ReA120 . 

We a r e  now ready to formulate the problem. It m y  be pointed out that 

in the non-moving case considered by Sommerfeld, the z-component of A - 
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alone was sufficient to match the boundary conditions. In the present problem, 

because of the motion of the dielectric in the y-direction, it is reasonable to 

expect that the y-component will also be needed. 

a) Upper Half Space 

(4.9) 

? Ao(z-h)+Fze-"l e i(PlX+P2Y) dPldP2 
(4.10) 

2 where C = -iwp0m/87r . The sign convention in the primary excitation should 

be chosen s o  as to ensure the convergence of the integrals. 

+ sign for 0 < z < h (Region 2) 

- sign for h < z < 00 (Region 1) 
(4.11) 

b) Lower Half Space 

(4.12) 

(4.13) 

The problem can now be solved, in principle at least, since all the four unlmown 

functions can be determined from the following boundary conditions. 

a) continuity of tangential E - and H_ 

b) continuity of normal D - and B - (3.49) 

In Chapter III, where w e  considered the problem of reflection and refraction of 

a plane electromagnetic wave at the boundary of a semi-infinite moving medium, 
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l -  

it was shown that b) above follows from a) and Snell's law. This is also true in 

the present problem even though we do not make use of Snell's law in an explicit 

manner; because of the Fourierintegral representation, Snell's law in fact 

enters implicitly. Now, let us compute the electric and magnetic fields. 

a) Upper Half Space. The fields are obtained by substituting (4.9) and 

(4.10) into (4.2) and (4.3) and differentiating under the integral sign. 

(4.14) 

(4.15) 

(4.16) 

(4.19) 
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The sign convention is given by (4.11). 

b) Lower Half Space. Substituting (4.12) and (4.13) into (2.34) and (2. 35) 

-a, 

F(P1X+P2Y)+A1Z] 
p H  x a  = 1 e-iwRy 11 dpldp2 e iP2Gz-A1GJ 

1 -iwRy p H = - e  z a  

The disturbing factor 

J J  
-00 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

-iw Ry e appearing in (4.20) - (4.25) can be brought under 

the integral sign by invoking the translation property of Fourier transforms 

given below. 

e -iwot g(t) = C(wWO)eiwtdu , 
-a, 

(4.26) 
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where g(t) and G(w) are the Fourier transform pair 
am 

(4.27) 

(4.28) 

Applying the boundary conditions (3.49a), we obtain the following set  of four 

equations arranged in the order of continuity of H 

The asterisk ::: indicates that the argument has been changed from p2 to (p2iw0) 

H , E and E at z = 0. 
x' y x Y 

for instance ,h 
2 1  4' XP =[p l a  +- (P 2 + w ~ ) ~ - a $ J  etc. 

1 -- 0 
P O  

.C 

Xi 

0 

F 
Y 

z 
F 

.I- 

G-'. 
Y 

.L 

G"' 
z 

(4.29) - (4.32) 

Before solving the above system of equations, we will verify that the boundary 

conditions (3.49b) are automatically satisfied. The continuity of DZ and B at 

z = 0 yields 
Z 
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We note that these two relations can be obtained from (4.29) - (4.32) thus 

2 
(4.33) = ip2(4. 29)-tp1(4. 30) 

(4.34) = p2(4. 31)+(4. 32) 

Setting p = poJ solving the system (4.29)- (4. 3 a J  we get for the unknown functions 

(4.35) 

0 
h 

(4.36) 

(4.37) 

(4. 38) 

where 
iwpo m 

87r 
c = -  

2 

and 

(4.39) 
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Thus our formulation in terms of the y- and z-components of the vector potential 

does indeed lead to a solution. Evaluation of the infinite integrals is all that 

remains to be done. It turns out that this is indeed a formidable problem in itself. 

Even in the non-moving case, where a single integral is involved, closed form 

solutions are not possible and the situation is much worse in the present case. 

Before we take up the evaluation of the integrals, it is in order to present an alter- 

nate formulation of the problem. 

4.2 . 2  Method of Weyl. Weyl developed a method by which Sommerfeld's 

solution for a dipole over flat earth could be interpreted as a bundle of plane waves 

reflected and refracted by the earth at various angles of incidence. The alternate 

formulation to be presented here would not only extend a similar concept to the 

present problem but serve as an independent check on the results obtained in the 

previous section. This is easily accomplished by changing the variables of inte- 

gration in (4.14) - (4.25) to polar coordinates but first a few remarks are necessary. 

In Chapter In, where the problem of reflection and refraction of a plane 

electromagnetic wave was considered, in order to facilitate analysis , we distinguished 

between two kinds of polarization depending upon whether the incident electric 

field was perpendicular or parallel to the plane of incidence. In the present problem, 

since the dipole is vertical, lines of H_ in the upper half space are circles, hence 

perpendicular to the meridian planes and every such plane is a plane of incidence 

as shown in Fig. 9. The electric field is, therefore, parallel to the plane of inci- 

dence tbugh not perpendicular to the direction of propagation. Our aim would then 

be to show that the results of the vertical dipole problem are the same as those of 

the reflection and refraction problem in which the incident electric field is parallel 

to the plane of incidence. 

In the last section, prior to the formulation of the problem, attention was 

drawn to the fact that the fields in the upper half space are caused by a primary 

excitation due to the dipole itself and a secondary excitation due to currents 
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induced in the dielectric. Referring to Fig. 12, one may also interpret t?iese two 

contributions as a direct field and an indirect o r  reflected field reaching an obser- 

ver at a point P. With a view to express these fields as integrals of elementary 

plane waves, consider the integral representation (4.6) 

Introducing polar coordinates defined by 

p1 = k sin a  COS/^^ 
0 1 

1 p = k sincr s in0  2 0  1 

where a is complex and 
1 

(4.40) 

p, real, varying from 0 - 2n, the above relation becomes 
m 

ib p ? ko(h-z)cos QJ 
(4.41) 

ikoR1= 5 1; -ioo - 
dR1 

e - 
2T 

' e  
R1 0 

where 

f :  O < z < h  

-: h < z < m  

dR = s i n a  d a  dp 
1 1 1 1  

p = ko(x sin a cos - 1 1 +y sin crl sin p,) (4.42) 

and the path of integration in the complex a plane is as indicated in Fig. 13. 

The integrand in (4.41) is easily recognized as a plane wave in the directions 

al, 0,; in fact (4.41) represents the spherical wave function as a superposition of 

plane waves with real directions for which 0 < cy < - and complex directions for 

1 

7r 

1 2  
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P 

2 
SP=R1 
O P = R  
S'P =% 

I 
h 

V--, 

3 

FIG. 12: PHYSICAL INTERPRETATION OF THE DIPOLE PROBLEM 
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FIG. 13: PATH OF INTEGRATION IN THE al P U N E  

7c which al is situated between 7c/2 and - -i 03. 

imaginary values of cos al and therefore are exponentially attenuated in the z- 

direction (evanescent waves). 

positive z-axis and in Region 2, from the negative z-axis which is thus also the 

angle of incidence at which an elementary plane wave meets the dielectric surface 

as shown in Fig. 12. 

The latter correspond to positive 
2 

Moreover, in Region 1, nl is measured from the 

Changing the variables of integration in (4.17) - (4.19) to polar coordinates 

defined by (4.401, we get for the primary magnetic field 
m 

(4.43) 
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. 

where 

5 = x s i n a  cos /3 +ysina s in0 -z cos a 
1 1 1 1 1 

I = -  - G s i n a  s inp  k 0  1 

c 2  ko sinal cos p1 . (4.44) 

The integrand in (4.43) may now be identified with the incident field (3.84). 

Similarly, for the reflected field in the half space z > 0, we get 
71 

ikor) 
(4.45) dR1 T =rrm (R1> R2> R3)e 

0 0  
where 

r )  = x sin CY cos Pl+y s in  (Pisin Pl+z cos al 1 

R = - i 3  kocos al(sinalsin/31F,-cos alF 
Po Y 

R2= - - i 3  k sinalcos ctlcos PIF, 
Po O 

i 3  R3= - k sinalcos a cos p F . 
I-10 O 1 1 Y  

(4.46a) 

(4.46b) 

(4 .46~)  

We also note that 

R sin altos P1+Rpin Q sin P1+R3 cos al= 0 . 
1 1 

The integrand in (4.45) may now be identified with the reflected field (3.86). 

Theprocess of expressing the fields in the lower half space in terms of plane 
-iw Ry waves is slightly involved. By bringing the factor e 

in accordance with the translation property (4.26), the phase function will assume 
under the integral sign 

the form 
i(plx+p2y)+~~ z 

e 

where i h  

(4.47) 
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In order that the above may represent a plane wave in the direction %, p2 in 

the moving medium as shown in Fig. 12, we make use of the modified Snell's law 

"2 k sin a = K sin 
0 1  

P, = P2 

and since K satisfies (3.27) with et = %, f t  = p2, we get 
.II 

A''. = -i K cos CY 1 2 

the negative square root being chosen to ensure the convergence of integrals. The 

phase function (4.47) now becomes 

i~ [xsincr, cos p 2 +y sin % 2  s i n p  -z cos 4 
e (4.48) 

which has the desired form. Using the above relations in (4.23) - (4.25), we get 
rr 

f T  k -ia> i u  5 
(4.49) 

where 

< = x sin %cos p +y sin a sin ,!I -z cos CY 2 2 2  2 

{ ( K s h  %Sin p2 -tW R)G"'+ K cos %G'" 
Y 

ik2cos a 
0 T =  1 a/J Z 

2 ik cos& 
T = -  K sina, cos p G::: 

2 w 2 2 z  

2 Y  

2 
K s i n q ~ c o s  G::: . 1 ik cosa  

0 
T =  

3 aC1 

We also note that 

T2 T K sin@ cos@ + - ( K  s i n a  s inp  +wR)-T C O S Q  = 0 . 1 2 2 a  2 2  3 2 

(4.50a) 

(4.50b) 

(4 .50~)  

The integrand in (4.49) may now be identified wit11 the transmitted field (3.88). 
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The electric field can be similarly expressed as integrals of plane waves and the 

resulting set of equations for the unknown functions would be identifical to (3.90) - 

(3.95). This shows that the problem of the dipole reduces to the problem of 

reflection and refraction. 

4.2.3. Approximation of the Integrals; Asymptotic Forms. We are  now 

faced with the task of evaluating a series of double Fourier integrals such as 

those in (4.9) and (4.12). The integrands involved in each case are too compli- 

cated to permit even one integration exactly. However, in the present problem, 

it is sufficient to obtain an asymptotic expansion because the first term in such an 

expansion corresponds to the far zone field which is of major interest in a radiation 

problem. One of the most important methods of obtaining asymptotic expansions 

is the method of saddle points. The two-dimensional case has been discussed by 

Bremmer and others . The results are 12 

in which A i s  the Hessian determinant 

and the subscript s denotes that quantities are to be evaluated at the saddle point 

which is found by simultaneously equating to zero all the partial derivatives of f .  

In the above integral A and f are  assumed to be sufficiently regular and 

its approximation is derived by replacing f by its Taylor series about the saddle 

point and cutting off terms beyond the second order. 
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a) Fields in the Upper Half Space. The primary vector potential is given by 

(4.52) 

where R1 is the distance between the dipole source and the point of observation P 

as shown in Fig. 14. The f a r  zone (radiation) fields are found by substituting 

(4.52) into (4.2) and (4.3) and retaining l/R1 terms only. 

mk2 o e  E = -s in8 cos 8 cos 9 - 

o e  

Xp 1 1 

YP 1 1 E =-sin8 cos8 s in9 - - 

'koR1 *o e H =sinOsinf - 
Xp 1 47r R1 

YP 1 47r % 
mu& ikoR1 

H =-sine cos 9 - e- 

(4.53) 

(4.54) 

H =O 
ZP 

where 8 is measured from the positive z-axis as shown in Fig. 14. 

Now, in  the integral representations (4.9) and (4. lo), F and F, contribute 
1 

Y 
to the reflected waves. Examination of (4.35) and (4. 36) reveals that integrals of 

the type given below are involved in each case. 

(4.55) 
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P 

FIG. 14: DIPOLE SOURCE AND IMAGE 
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where 

We will now use the result given by (4.51) to obtain an asymptotic expansion of I. 

Introducing polar coordinates defined by 

(4. 56) 

( z + ~ ) = R ~ c o s  e2 J 
where R2 is the distance from the image point as shown in Fig. 14, the integral 

becomes 

R2f 
I= lJ A(P1JP2)e dPldP2 

where 

f = i(p sin 8 cos pkp2sin e2sin @-(p2-ki)pcos 6 4  
c 1  2 

Setting the partial derivatives equal to zero, we get 

= E sin e2cos f- 
*l 

pFose21 = O ' 
G- =[isin, s in9 - 
ap2 @q 

Saddle point s occurs at 

p =k sin8 cos 9 
p =k sine s ing 

1 0  2 

2 0  2 

provided we 

A = -  
S 

take (P2-kzp= -ik 0 cos 8 2 '  A direct calculation shows that 

1 
2 2  k cos O2 
0 
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and 
n i 

J A ,  = - 
2 

k cos8 
0 

The reason for choosing negative square root will be given shortly. Thus, the 

asymptotic expansion of (4.55) becomes 

dPldP2 

ikoR2 
-00 

e 
N 2 k cos 8 A(k sin 8 cos fJ  k sin 02sinf) as % t a0 - (4.57) 

0 R2 i o  2 0  2 

As an example, consider the first term in (4.14) which corresponds to the primary 

field. For z > h, we get 
mkz ikoRl 

E = -sin e COS e COS 9 e 
Xp 1 1 4a Eo% 

which is the same as that given by (4.53). 

Hessian determinant has been chosen to yield consistent results. The contribution 

due to the saddle point yields for the reflected waves 

Thus the negative square root in the 

ikoR2 
2 2  

(4.58) 

i w o m  e 2 

R2 Ds 
- cos e sin e Q c sin e2+sin 9 [ ( c z ~ )  +an (l-ad 

2 2  
A =  

y r  47r 

2 2  an -sin 02) 
-iwp m e *oR2 

0 A =  
zr 47r R2 

*cos e2 an -sin2e2cos 2 1  9- - ( ~ c  b i n  e2sin@ c 2  a 

-a(l-a)n 2 s i n 2 ~ ~ s i n 2 f - n c  sin e2sin g(l+sin 2 e2+m sin e2siii 9) 1) (4.59) 
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where 
D = (an -sin e )+an 2 [a-sin 2 e2(acos 2 #+sin 2 

S I 2  2 

The resulting expressions are too lengthy for the general case. We will consider 

only two principal planes, namely the xz and yz planes in detail. 

Case 1: $! = 0 (upper sign) or  9 = 180° (lower sign) 

Primary Field 

y p = O  
E 

d2 ikoRl 
E = sin el- - 2 o e  

ZP O R 1  

60 

(4. 62) 

(4.63) 

(4.64) 

(4.60) 

The fields can be obtained either by applying the saddle point method directly to 

the integral representations given by (4.14) to (4.19) or by substituting (4.58) and 

(4.59) into (4.2) and (4.3) provided the differentiations are replaced according to 

the following scheme. 

1 - -  a - ik s ine  cos# 
ax 0 2 
a - = ik s in8 s in9 a Y  0 2 

az o 
- -  a - ik COS e2 . 

(4. 61) 

H = O  
ZP mk2 ikoRl 

- O e  

5 
E = + s i n e c o s e  
Xp 1 1 47Mo 
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Reflected Field 

(4.65) 

(4.66) 

H =TH we2 (4.67) zr XI: 

ko E   COS^ H - 
xr 2 y r  w e o  

Y r  N 2 47re0 R2 

&2 ikoR2 
2 2  2 o e  E = - -  /3(n -1)sin 8 2 ~ ~ s 0  - 

(4.68) 

(4.69) 

(4. 71) 

which is the same as (3.75a) with Oi=e2. Moreover the above results, apart 

from constant factors, are the same as those in Chapter III, Section 5 for the 

case A = O .  

For numerical calculations the above results can be put in more convenient 

forms. Making use of the following approximations for points of observation 

remote from the dipole source (See Fig. 14). 

el- e2 = e 

R2=R+hcos 8 

(4. 72) 
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the total electric field in the upper half space in spherical coordinates (R, 8,f) 

is given by 

E,= 0 I -ikohcose ik hcose K. 

E =-sin0 e +e 0 [1-&) In2 (1 -8 - (i -n2& sin2 8 e 

Case 2: 8=9O0(upper sign) o r  f=27Oo (lower sign) 

Primary Field: 
ikoRl 

mwko e 
H =?s ine  - 
Xp 1 47r R1 

H =H = O  
Y P Z P  

E =O 
Xp 

a2 ikoRl 
E =?sine cos8 - - o e  

YP 1 1 4 5  R1 
2 mkg p o R l  

E =sin 8 - - 
R1 Z P  1 4% eo 

Reflected Field : 

xr 

H =H =O 
y r  zr  

E =O xr 

(4.73) 

(4.74) 

(4.75) 

- I  

- 1  

(4.76) 

(4.77) 

(4.78) 
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E = ; sine2c0s e2 1 - 
Y r  c 

2F 14 e i%R2 

R2 z r  (n2cos 02+F) 471. f0 

where 

(4.79) 

(4.80) 

(4.81) 

Once again, we note that the above results, apart from constant factors, are the 

same as those in Chapter m, Section 5, for the case gi = 90°. 

Using the approximations (4. 72), we have for the total electric field 

E =O 
R mk2 ikoR -ihhcose %hcoseE- 2F(B) j\ -- 47r o eo e R 

2 (4.82) +e 
n cose+F(e 

E G O  * f 

b) Fields in the Lower Half Space. The unknown functions G and G in 

(4.12) and (4.13) are related to G ‘ I .  and G‘” given by (4.37) and (4.38) as follows. 
J, Y Z 

Y Z 

A convenient set of polar coordinates in th is  half space a re  

x = R sin$cosg 
y = R sin@sing 

(4.83) 

(4.84) 

.e, 

z = -RCOS$ 

where @ is the angle shown in Fig. 14 and R, 9 have their usual meaning. Due 

to the presence of the factor e-’oh in G::: and G% , integrals of the following type 
Y 
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are involved in the determination of A and A . Y Z 

Rf(P1, P,) 
00 

I =  dPldP2 

where 

h 
f =  E(plsin$ cos sin$ sin g)-\cos - E x~:J 2 

(4.85) 

In order to obtain an asymptotic expansion of (4.85), we first determine the 

saddle point of f. Setting the partial derivatives equal to zero, we get 

The solution of above when h # 0 is quite difficult and will not be considered here. 

When h = 0, we get 

provided we take 

X1= i a  q z  k ( - ) 
Ra 

where 

(4.86a) 

(4.86b) 

(4.864 

(4.87) 
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At the saddle point 
0 

R 
f = i a  lb k ( 3 )  

S 

For consistent results, we  take 

Using (4.511, the asymptotic expansion of (4.85) becomes 

ia@ k Ra 

(4.88) 
a 

i Ein2+(cos2f+a si n2f)+cos2@] R 

2 r a k c o s ~ A ( a  @ kx/Ra, a 3F ky/R )e 
I N  asR-,a> 

Since, as in the case of upper half space we are going to consider the fields in 

the two principal planes only, the asymptotic expressions of A and A for the 

general case will not be given here. It may be noted that when using (2.34) and 

(2.35) to determine the far zone fields, the differentiations are to be replaced 

according to the following scheme. 

Y 2 

ax 

- -  a - ia3b k( Y) 
aY Ra 

(4.89) 

Case 1): h=O, q = O  (upper sign) or  $= 180°(lower sign). 

\ (4.90) 
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2 . 2  
D 

(4.91) 

2 2 2  * 
0 

ia lP n k R  
iw/Jom e 

A = -  
Z 47r R 

where 

(4.92) 
c v a - ( n c )  cos $-a n sin $]+a (n +l)cos$ 1-(nc) -an sin J 2 2 2 2 2  * 2  

The magnetic field is given by 

ink 
Hx= $ cos $ A 

Y 
a 

ink0 
HY= 1/2 sin$JA Z 

HZ= - T s i n @ A  Y 

a 
inko + ' 

a Po 

(4.93) 

(4.94) 

(4.95) 

A point worth noting is that the above results cannot be obtained by substituting 

8 := $J in (3.99) to (3.101); Ott has drawn attention to it for the non-moving case. 
t 

The electric field is given by 

E = +%sin  $cos@ A x - a  Z 

E = i w A  

E =%sin 

Y Y 

z a  
2 

or  in spherical coordinates 

E = O  

E = - % s i n  
R 

e a 

E - + i w A  6 Y 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 
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Case 2): h=O, f=90°(upper sign)or 9=2 70°(10wer sign) 

0 5P 
ia @ nk R E  

2a ncosrll e 
R 

P 2 D  

M 

P (4.102) 

(4.103) 

where 

The fields are given by 
ink 

Hx= -j-$- [COS T,!J A +sin@A] e -id@ 
Y -  Z 

a c'g 
H =H =O 
Y Z  

E =O 
X 

E =iw cos - @ [cos@A ?s in$AJe -iw Ry 

E =j&j-  sin'Ein@ AZ 2 cos @ A 1 e -iw sly 

P2 Y 

P 2  Y 

(4.104) 
(4.105) 

(4.106) 

(4.107) 

(4.108) 

or in spherical coordinates 

E -0 R- 
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(4.109) 

c) Fields in the Free Space Side of the Interface for Low Velocities. The 

asymptotic forms obtained thus far have certain limitations. First of all, since 

the expansions are  only up to the first order term, they a re  of no avail should 

the coefficient of this term vanish. This is precisely what happens when the 

point of observation P moves very close to the interface as shown in Fig. 14 and 

is far removed from the dipole. In such a case 
\ 

and 

el% e2z e 5-  

(4.110) 

R 1 2  =R "i 
substituting the above in (4.52), (4.58) and (4.59),, we note that both the 

components of the vector potential, hence the fields, vanish. Next consider the 

expression under the square root sign in (4.60). Substituting for a and S2, 

rearranging, we get for this expression 

which becomes negative if  total reflection occurs. This would give rise to com- 

plications which go much deeper than just making the amplitude of the reflected 

waves complex. To get an idea of the nature of these complications, it is im- 

perative that we examine the method of saddle points in greater detail. While 

distorting the given path of integration into the path of steepest descents throug!: 

the saddle point, one might sweep across the singularities of the integrand. In 

such a case, the path of integration must be deformed to avoid the singularities 

and in the final result their contributions included. 

in Sommerfeld's original problem and have been thoroughly discussed by Ott 

These difficulties also occur 
13,14 . 
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In the present problem, it is almost impossible either to obtain higher order terms 

or  to examine the singularities because the integrands are unwieldy, and a 

double integral instead of a single integral is involved. The situation eases con- 

siderably if one integration can be carried out exactly. We will, therefore, make 

some reasonable approximations to achieve this. First, a and 0 are expanded 

in Taylor series about B = 0 

1 .  s2- J n2 

For low velocities, it is sufficient to retain only the first term, so that 
\ 

C 

(4.112) 

(4.113) 

I a% 1 

Making use of these approximations in (4.35) and discarding higher order terms in 

P, we get 2 - b h  
2iCWR-p e 

U 
F G  

k (A+ZA )(A+A ) 
0 0 0 

where 

I 
Because of the troublesome factor 2 w flop2 

(4.114) 

(4.115) 

occurring in the denominator, the 

above still cannot be integrated over one of the variables. Expanding the 

denominator in Taylor series and retaining only the first order term in P, we 

get 
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-A h 2 0  
2iCwQop e 

k2(A+r? Ao)(A+h0) 
F W  

0 

(4.116) 

which is the desired low velocity approximation. Similarly from (4. 361, we get 

Substituting for F and FZ in (4.9) and (4. lo), introducing polar coordinates 

defined by 
Y 

p =pcos v , 1 
x = pcospl, 

p =ps inv  

y =ps ing  
2 

where p is the cylindrical distance and making use of the relations 

7 
J iZcos(v-@dv 

where J stands for the Bessel function of the first kind, we get 

-A (z+h) 
A =  0 P3dP 0 

(4.118) 

(4.119) 

(4.120) 

70 

I 



T H E  U N I V E R S I T Y  O F  M I C H I G A N  
7322 -2-T 

(4.122) 

JO 
2 

where - - -denotes any arbitrary function of p . It may be noted if /3 = 0, A =O 

and only first three terms in A, remain which checks with known results. Let 

us consider the first integral i n A  

Y 

Z 

(4.123) 
0 

-X (z+h) 
0 

e e Pdp  . 

Approximation of the above integral has occupied the attention of several inves- 

tigators beginning with Sommerfeld . Besides, 0ttl3, 14, Nomura has given a 

thorough treatment and we will draw freely from their work. Similar approxi- 

mations can be carried out on (4.12) and (4.13) which pertain to the lower half 

space. There is no need to give the complete expressions here but it is enough 

to note that the exponent will be of the form 

15 

e (p2-k2)@z = e  Az . 
(4.124) 

The integral I1 will now be transferred to a complex p plane defined by 

P = k o s ~ P *  cr =p1+tr2 0 (4.125) 

a a For the path of integration L running from- - ti a, to - -ia> through the origin as 2 2 
shown in Fig. 15, it is necessary that we choose 

so that (4.124) is bounded as z +-a0 . The integral now becomes 

(4.126) 
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Branch cut 
if n is real 

FIG. 15: ILLUSTRATION OF SADDLE POINT METHOD 
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where 
2 * ,  cos p 

2 , w = (n -sin p )  A =  
(n cosp+w) 

Let us now examine the singularities of Ab) in the strip -a< p ~a . 
convenience, we will consider n as being complex. However, this does not imply 

that the results obtained thus far can be extended to moving conducting media 

because certain points in their electrodynamics have not yet been fully resolved. 

The singular points of A are: 

For 1 

a) Branch points of w defined by sin p = n; since sin p=sin(r -p), there exist 

four in number v , v , v and v of which v and v can be considered as the 
1 2 3  4 2 4 

reflection of v and v about the origin. For real values of n the branch points 

lie on the real axis if n < 1 and on the vertical lines p = ? '1 if n > 1. 

ponding to the two combinations of signs of w, the integrand is double valued 

and its Reimann surface has two sheets. These sheets a re  connected with one 

another by the branch cuts along the lines Iw=O running from the branch points 

to OD as shown in Fig. 15 for the case Inl<l. If n is real and is less than 1, the 

branch cut emanating from v degenerates into a portion of the real axis from 

-sin-ln and the origin and the negative imaginary axis. Similar remarks apply 

to the remaining branch cuts. The upper (lower) sheet is specified in which 

Imwis greater (lesser) than zero. The path of integration L lies on the upper 

sheet. 

1 3 
Corres- 1 2  

2 

b) Four poles of first order obtained by setting the denominator equal to zero. 

A simple calculation shows that the poles are given by 

(4.127) 

Whether they lie on the upper o r  lower sheet can be ascertained by examining the 
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relation 
W 

P 
2 

c o s p  = -  - - 
P n  

(4. 128) 

Let 
ia I 

2 OSCY<- n = 1.1. , 

(l+n )= ll+n2 I e2Q , /3< a 2 

then 

Since Tm w > 0 i n  the upper sheet, we have to choose the positive sign, so that P 

-iP in the upper sheet. 2 n 

Substituting in (4.128), we get 

Wp -i/3 
c o s p  = - I s l e  , o , ( p < ;  * 

P 
Since 

cosp=cos(p t ip2)=cosp coshp -i sinp sinh 1 1 2 1 %  

the position of the pole in the upper sheet is given by 

e 
Thus when n is  real the pole lies on the real axis between ?r /2 and T ,  coinciding 

with 7r + io when n = 0, moving left as n increases and approaching 7r/2 + io as 

n -00. 

the discussion on the singularities of the function A in (4.126) 

The inverse point is also pole lying on the upper sheet. This completes 

In order to proceed with the saddle point method, the Hankel function in 

(4.126) is replaced by its asymptotic value 
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and introducing polar coordinates defined by (4.56) we get 

where 

The exponent 

ik R cosb-8 )=k R s i n b  -8 )si* t icosh -8 )coshl 
0 2  2 0 2  L 1 2  2 1 2  

(4.129) 

(4. 130) 

has negative real part  in the hatched area of Fig. 15 (++e (cc <8 above and 

8 <p <a+e2 below the real axis) in which the above integral converges. A 

simple calculations shows that the saddle point is given by p =€I and the path of 

steepest descents is given by 

2 1 2  

2 1  

s 2  

i.e. cos (p -e )cosp2 = 1 
1 2  

Re cos(,,-8 ) = 1 , 
2 

I 
and is denoted by L in Fig. 15. A s  the angle02 varies from 0 - - , L just 

shifts parallel to itself. Let us now find out what part the singularities of A in 

(4.126) play in the process of distorting the given path of integration L into the 

path of steepest descents Ls. 

S 2 S 

If n is real and less than one, a finite portion of L, would lie on the lower 

sheet (indicated by broken lines in Fig. 15) for €I2(sin-'n. Since the condition 

Im(n2-sin 2 @  p) > O  is not needed in (4.126), this is of no consequence. However, 

if 02> sin-In, the path of integration will have to go around the branch cut from 

v1 (details about which can be found in 0 tt's13 work). The branch cut integrations 

a r e  not important in the present problem; hence will not be included . Similar 
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remarks apply when n 7 1 . Regarding poles, from previous discussions it is 

clear that none is swept across unless 82 + 7r/2 and n >7 1 when the pole and the 

saddle point come arbitrarily close to each other. Ott14 and van der Waerden l6 

have presented a modified saddle point method to take care of such a situation. 

Their results are not needed here since the dielectric medium we have in mind 

is an ionized gas whose index of refraction will be less than unity. 

the present, the singularities of the integrand in (4.126) play no significant part. 

To get an idea of the fields in the free space close to the dielectric, it is necessary 

to carry out the saddle point method of integration up to second order terms. Fol- 

lowing d4, we make the following substitutions 

Thus, for 

p - e 2 = t  
2 cos t = 1 + is 

and taking 
i7r/4 t s =+Re s i n -  2 

we get 

One now expands the integrand in power series in s and integrates term by term 

to obtain 

where 

~ 0 ~ - 1 ( p - e  ) 2 2  
Substituting in (4. 130), we get 
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e ik0R2 [ G''(O2)] 

F(e2)+ 2ikoR2 
R 2 (sme2) 

ik p 
0 e 

2 2  

2 
-in 

k (1-n 1 p 
I1& 

0 

(4.131) 

(4.132) 

where p is the cylindrical distance. The remaining integrals in (4.120) and 

(4.121) can be approximated in a similar fashion. The final results are given by 

The fields can be determined from (4.2) and (4.3) bearing in mind that 

a - = ikocosf 

a - = ikosinq 
ay 
- _  a - 0 .  
8Z 

ax 

(4.133) 

(4.134) 

(4.135) 

This completes the solution of the problem of the vertical dipole over a moving 

medium. 

4.2.4 Numerical Results. For polar plots&eland IE I 
$ are 

(4.136) 
(bar denotes conjugate) . 

2 
These are depicted in Figs. 16 - 2 1  for n = 2 and n .=  0.5. In the course of 
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numerical calculations uncertainty regarding the sign of the square root has been 

resolved in the following manner. Take for example the expression for Ee 

given by (4.73). The quantity under the square root also happens to be the wave 

number K of the transmitted wave in the problem of reflection and refraction 

discussed in Chapter III. In order that fields may not become infinite it is clear 

that a positive square root must be chosen, i. e. 
- 1  

(4. 137) 

The symbol X in all figures stands for wavelength in free space and should not be 

confused with the same notation used elsewhere. 

4.3 Horizontal Dipole in the Direction of the Velocity 

4. 3.1 Fourier Integral Method. Jn the non-moving case considered by Sommerfeld 

both y and z-components of the vector potential were needed to satisfy the boundary 

conditions. 

similar to the vertical dipole problem. 

The same is true in the present case and the method of solution is 

a) Upper Half Space: 

A = I F e  Z Z dPldP2 

(4. 138) 

(4.139) 

where 
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A 0 =(p2-<?, ReAo>,O 

b) Lower Half Space: 

- -  
-OD 

-OD 

where 

5 = (pl 2 + ,p2-ak2)’, 1 2  Re \) /O . 

The continuity of H H E and E at z = 0, yields the following set of 

equations. 
x’ y’ x Y 

(4.140) 

(4.141) 

(4.142) 
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1 
0 

k 
- 

0 

P2+W fl 

k2a2 

->bh 
x, 

- Ce - 

- 
0 
x 
- 

0 

- 
k2 
0 

(4.143)-(4.146) 

We note that the system matrix is the same as in the case of the vertical dipole. 

Setting p = p solving for the unknowns, we get 
0' 
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(4.147) 

(4.148) 

(4.149) 

(4.150) 

where D is given by (4.39) 

4.3.2 Approximation of- the Integrals - Asymptotic Forms 

a) Fields in the Upper Half Space: The primary,vector potential is given by 
ikoRl 

A = O  -@om e A =0, A = 
Xp YP 4 nR1 ' ZP 

(4.151) 

and using the asymptotic formula (4.57 ), we get for the reflected vector potential 

A =O xr I 

-iyc m o e  A =  
yr  47r 

-a(l-a)n 2 2  sin 0,~in~g-Q a ~ i n ~ ~ s i @ + s i n ~ f 3 ~ + R ~ o  

ikoRZ 

1 

2 
D 

A =- *om e . -  
S R2 z r  47r 

2 2 -nc lisin 8 sin ~ + R C  sins 
[ r 2  2 (4.153) 

J 
where Ds is given by (4.60). 
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The fields in the two principal planes are given by: 

Case 1): f=O (upper sign) or  $!=180°(lower sign). 

Primarv Field: 

E =O 

E = O  
ZP I 

ikoRl 
o e  mwk 

xp 1 4%- 
H =-case - - 

R1 

ik R H =O 
0 1  YP 

+ H = -  sine - - o e  mwk 

ZP 1 4a R1 

Reflected Field: 

E zr =;Exrtan02 

k, 
H = -COS e - " E  

xr 2 w n  Y r  
v ikoR2 

- 2  2 *o e H = + - /3(n -l)si118~cosO~ 7 - 
R2 Y r  N 
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E H = _  sin8 - 0 
k + 

z r  2 UPo Y r  (4.161) 

where N is given by (4. 71) . 

Making use of the approximations (4.72), we get for the total electric field 

in the upper half space 

E =O 
R 

(4.162) 

Case 2):f=90~(upper sign) or  8=270~(lower sign) 

Primary Field: 
*ORl 

H =-case - - 
R1 

o e  11u3k 
Xp 1 47r 

H =H = O  
YP ZP 

E =O 
Xp mk2 ikoRl 

2 o e  E =COS e - - 
YP 1 4 %  s 

mk2* ikoRl 
- o e  E = + s i n e  cos0 - - 

ZP 1 147r€0 5 

(4.164) 

(4.165) 

89 



T H E  U N I V E R S I T Y  O F  M I C H I G A N  
'7322-2-'I' 

Reflected Field: 

2F o e  

n cos6 +F xr 
2 (4.166) 

H =H =O 
yr  zr  

E =O xr 

2F o e  

d 2  ikoR2 
]sine case - o e  - E =+[I- 22' 2 2 4 n ~ g  R2 n cos0 +F zr  

2 

(4.167) 

(4.168) 

where F is given by (4.81). 

Making use of the approximations (4. 72), we get for the total electric ficld 

in the upper half space 

ik R 
0 

(4. 169) 
-ik hcose ik hcose 

-e 0 0 

b) Fields in the Lower Half Space. A s  in the case of the vertical dipole, 

the problem of obtaining asymptotic forms for the fields when h # 0 is extremely 

difficult. The results when h = 0 can be obtained by using the formula (4 88). 

Case 1): h=O, f=O(upper sign) or  f=180°(10wer sign). 
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. 

(4.171) 

where D is given by (4.92). The fields can be obtained by substituting the above 

into (4.93) - (4.101). 

Case 2): h=O, 9=9O0(upper sign) o r  !=27O0 (lower sign). 

(4.172) 

+ - R c  - s i n d l  

E 
(4.173) 

where D and $ are given by (4.104) and (4.105). The fields can be obtained by 

substituting above into (4.106) - (4.109). 

c) Fields in the Free Space Side of the Interface for Low Velocities. The 

procedure is identical to that used in the case of the vertical dipole. For small 

velocities; 

(4.174) 

2 
2WQOAOP P2 

2 2 
F z- 

koA(A.+Ao)(A+n A,) 
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Substituting in (4.138) and (4.1391, introducing polar coordinates defined by (4.118) 

and making use of the relation 

2a 

sin2v eizcOs(v-g)& a E 0 (Z)+cos 2 f J 2 ( Z g  

' 0  

in addition to those in (4.119) , we get 

OD 

(4.176) 
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Carrying out the asymptotic expansions up to the second term, we get for 8 07r/2 2 

(4.179) 

(4.180) 
2 myco (l+n 

rs;g I z 27rk '7 2 
A =- 

o (n -1) (n -1) (n -1) 

This completes the solution of the problem of y-directed horizontal dipole over a 

moving medium. 

4.3.3 Numerical Results Polar plots o are  depicted in Figs. 

22 - 28 for n=2 and nQ. 5. In naming the figures, the words "y-directed horizontal 

dipole" have been abbreviated to 'horizontal dipole'' . 
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FIG. 22: \E IN THE xz PLANE FOR A HORIZONTAL DIPOLE FOH 
n - 2 ,  A -  h -  0 
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30" O0 30° 

FIG. 24: IE I IN  THE AIR IN THE YZ PLANE FOR A HORIZONTAL 
DPPOLE FOR n=2, h=O. 5h 
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60° 3oo O0 3Qo 60° 

FIG. 25: IE IN  THE XZ PLANE FOR A HORIZONTAL DIPOLE 81 
FOR n=O. 5, h=O 
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CHAPTER V 

CONCLUSIONS 

From the study undertaken in this work, the following conclusions can be 

drawn. 

5.1. When a plane electromagnetic wave, traveling in free space, strikes 

a uniformly moving semi-infinite dielectric medium , the incident, the reflected 

and the transmitted waves a re  coplanar and the angle of reflection is equal to 

the angle of incidence. However, Snell's law, hence the angle of refraction, is 

modified. The reflected and transmitted waves possess components not present 

in the incident wave and furthermore when the incident wave is polarized with its 

electric field parallel to the plane of incidence, there is no angle of incidence 

(Brewster's angle) for which the reflected wave vanishes. An exception to these 

results occurs when the plane of incidence is parallel to the velocity. In this 

case, there is a strong resemblance to the non-moving case. 

5.2. The problem of an oscillating dipole over a moving medium can be 

formulated in two ways. In one, Fourier integral representation of the vector 

and scalar potentials are employed and in the other, the electric and magnetic 

fields a re  expressed as integrals of elementary plane waves. The latter for- 

mulation has the merit of emphasizing the connection between the dipole and 

reflection-refraction problems. The solution by either formulation is in the form 

of integrals which cannot be evaluated in closed form. However, using the 

saddle point method, asymptotic expansions can be obtained. The first term in 

these expansions corresponds to the radiation field and from the numerical 

calculations, it is observed that in order to produce any perceptible change in 

the radiation patterns, the velocity must be comparable with that of light. 
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Finally, we would like to suggest some allied problems for future research. 

The case of the magnetic dipole over moving medium is a straightforward 

extension and the complementary problem where the sources are located in the 

moving medium should not prove to be too difficult. 

present results to lossy dielectrics is altogether quite a different matter 

since some delicate questiom pertaining to the electrodynamics of conducting 

media in motion need to be settled first. 

Extension of any of the 

. 

, 

102 



T H E  U N I V E R S I T Y  O F  M I C H I G A N  
7322-2 -T 

4 

REFERENCES 

1. Nag, B. D. and A. M. Sayied (1956), "Electrodynamics of Moving Media and 
the Theory of Cerenkov Effect, 1 t  Proc. Roy. Soc. (London), 235, - Series A, 

Tamm, Ig. (1939), "Radiation Emitted by Uniformly Moving Electrons, 

Sayied, A. M. (1958), "The Cerenkov Effect in Composite Media, 1 f  Roc. Phys. 
soC.(London), 71, 399-404. 

Zelby, L. W. (1962), "The Theory of Cerenkov Effect Based on Lorentz 
Transformation, 1f J. Appl. Phys., 33, 2995-2998. 

Frank, I. M. (1943), "Doppler Effect in a Refractive Medium, '' J. of Phys. , 

Tai, C. T. (June 1965), "Radiation in Moving Media, '' Lecture Notes for 
Summer Antenna Course, The Ohio State University. 

Lee, K. S. H. and C. H. Papas (1964), "Electromagnetic Radiation in the 
Presence of Moving Simple Media, 

54-4-551. 

2. 
J. Of Phys. (USSR), J NOS. 5-6 , 439-454 

3 .  

4 .  

5 .  
(USSR), NO. 2,52-67. 

6 .  

7 .  
J. Math. Phys. , 5- 1668-1672. 

8 .  Sommerfeld, A. (1964), Partial Differential Equations in Physics, 
Academic Press. 

Weyl, H. (1919), "Ausbereitung elektromagnetischer Wellen iiber einen 
ebenen Leiter, Ann. Physik, 6% 481-500. (An account of'Weyl's article 
may be found in; Stratton, J. A. (194) , Electromagnetic Theory, McGraw- 
Hill Book Company, New York. ) 

9 .  

10. Sommerfeld, A. (1964), Electrodynamics, Academic Press. 

11, 

12. Bremmer, H. (1949), Terrestrial Radio Waves, Elsevier Publishing Company. 

13. 

Papas, C. H. (1965), Theory of Electromagnetic Wave Propagation, McGraw- 
Hill Book Company, New York. 

Ott, H. (1942), "Reflexion und Brechung von Kugelwellen; Effekte 2. Ordnung, 
Ann. Physik, 41, 443-466. 

Ott, H. (1943), "Die Sattelpunktsmethode in der Umgebung eines Pols mit 
Anwendungen auf die Wellenoptik und Akustik, ) t  Ann. Phys., 43, 393-403. 

14. 

103 



T H E  U N I V E R S I T Y  O F  M I C H I G A N  
7322-2-T . 

15. Nomura, Y (March 1953), "On the Theory of Propagation of Electric 
Waves over a Plane Surface of Homogeneous Earth (on Sommerfeld's 
Surface Waves), I' Tohuku University Research Institute Scientific 
Report , B - (Elect. Comm. )2 5, No. 3-4, 203-214. 

16.  van der Waerden, B. L. (1951), "On the Method of Saddle Points, " 
Appl. Sci. Res., B2, No. 1, 33-45. 

17. Cohen, M. H. (1961), "Radiation in a Plasma-I: Cerenkov Effect, " 
Phys. Rev., 123, 711-721. 

104 



THE U N I V E R S I T Y  O F  M I C H I G A N  
7322-2-'I' 

APPENDIX A 

POINT CHARGE IN MOVING MEDIA: CERENKOV RADIATION 

. 

. 

, 

The problem of a point charge in uniform motion can be successfully 

treated in two ways. In one, the frame of reference is chosen to be at rest with 

respect to the medium whereas in the other, it is chosen to be at rest with res- 

pect to the charge. Nag and Sayied' used the latter approach to derive Frank and 

Tamm's formula for Cerenkov radiation. Using the same approach, we will 

now show that the fields can be derived in a more direct and simpler fashion. 

In the case of the moving medium considered in Chapter II, for an observer in 

the unprimed system, the fields due to a point charge q located at the origin 

satisfy 

V x E = O  - (A. 1) 

V x H = O  - (A. 2) 

v - D_ = q a(x) ab) 6(2) (A. 3) 

V . B = O .  - (A. 4) 

B = V x A _  - (A. 5) 

- E = - V f  . (A. 6) 

Introducing vector and scalar potentials defined by 

Nag and Sayied have shown that 
2 2 ?3! + 1 iL!! + = - 3- 6(x) a(y) 6(z)  

2 aay2  2 a€ ax az 

where 
V P =  c a = -  1-8 

1-n2f ' 

(A. 7) 
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The solution of (A. 7) when a > 0 yields the usual Lienard-Wiechert potentials. 

The case a <  0, i. e. n2$ > 1, corresponds to the Cerenkov effect and a formal 

solution is still possible i f  one recognizes that the form of the equation now 

resembles a two-dimenaional wave equation the Green's function of which is 

known. Following Cohen17, we have 

Q 2 t u  @ i f  aq2y>(x 2 +z 2 ) 1/2 

(A. 9) 
f=4= 2 2 2 1p ' 

Ew -(x +z ,1 
+ 112 2 2 1/2 = o  if - CY y((x +z ) 

where (Y = I a I and + sign gives retarded, and - sign advanced potentials and 

the physics of the situation helps us pick the correct one. Since the Cerenkov 

cone trails behind the particle, it is clear that the retarded potential is appro- 

priate when the velocity is in the positive y-direction and advanced potential for 

the negative y-direction. 

Since (4, ig/o'> transforms like a 4-vector, we have in the primed system 

(A. 10) 

(A. 11) 

To the primed observer the charge appears to move in the negative y' direction 

and the potentials are given by (A. 10) and (A. 11) when the velocity exceeds the 

critical value c/n. These formulas check with those of Frank and Tamm. 

Further, it may be nated that the potentials in the primed system satisfy the 
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gauge condition 

(A.  12) 

but the same is not true in the unprimed system since the gauge condition is not 

invariant unless n = 1. 
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ABSTRACT 

Two boundary value problems in the electrodynamics of moving media are 

solved in t h i s  dissertation. In both problems, there is  a lossless dielectric 

filling one half space and moving parallel to its surface with a uniform velocity; 

the remaining half space is vacuum. The primary problem involves the deter- 

mination of the radiation field due to an oscillating dipole located in vacuum. 

A secondary problem, namely reflection and refraction of a plane wave striking 

the moving dielectric, is solved as a preliminary to the more difficult problem 

above. The motivation for the present study is to introduce techniques for 

formulating boundary value problems in the electrodynamics of moving media 

and to ascertain if  any corrections are warranted in practical problems of 

similar nature where the velocities are quite small compared to that of light. 

Following the well known work of Sommerfeld, Minkowski's theory of 

the electrodynamics of moving media is developed. A modified set of vector 

and scalar potentials appropriate in moving media is introduced. These potentials 

are found to have closed form solutions. 

Starting from the Maxwell-Minkowski equations, plane wave solutions in 

moving media are determined. Once this is accomplished, the solution of the 

reflection-refraction problem is found to be quite straightforward. Certain 

interesting features are  revealed. First, Snell's law is modified, and the 

extent of this modification is indicated by a set of graphs depicting the angle of 

incidence versus the angle of refraction for different velocities and indices of 

refraction of the dielectric. Secondly, the reflected and transnitted waves 

possess components not present in the incident wave and furthermore, when 

the incident wave is polarized with its electric field parallel to the plane of 

incidence, there is no angle of incidence (Brewsterts angle) for which the 

reflected wave vanishes. An exception to these results occurs when the plane 

of incidence is parallel to the velocity. In this case, there is a strong resem- 

blance to the non-moving case. Exact expressions for the fields when the plane 

of incidence coincides with the two principal planes (perpendicular or parallel 

to the velocity) are given. 
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The dipole problem is considered next. The two cases of a vertical and a 

horizontal dipole over a moving medium are treated in detail. In each case, 

the problem is formulated in terms of double Fourier integral representations 

of the potentials appropriate in each region and a formal solution is obtained. 

An alternate formulation (the method of Weyl) is presented for the case of the 

vertical dipole in which all  fields are expressed as integrals of the plane waves. 

The purpose of this is to emphasize the connection between the reflection- 

refraction and dipole problems. Using the saddle point method, asymptotic 

forms for the fields are  obtained. 

planes are included. It is observed that in order to produce any perceptible 

change in the radiation patterns, the velocity must be comparable with that of 

light. 

Electric field patterns in the two principal 

Some allied problems for future research a re  suggested. 
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